947 research outputs found

    Rotation of a spheroid in a simple shear at small Reynolds number

    Full text link
    We derive an effective equation of motion for the orientational dynamics of a neutrally buoyant spheroid suspended in a simple shear flow, valid for arbitrary particle aspect ratios and to linear order in the shear Reynolds number. We show how inertial effects lift the degeneracy of the Jeffery orbits and determine the stabilities of the log-rolling and tumbling orbits at infinitesimal shear Reynolds numbers. For prolate spheroids we find stable tumbling in the shear plane, log-rolling is unstable. For oblate particles, by contrast, log-rolling is stable and tumbling is unstable provided that the aspect ratio is larger than a critical value. When the aspect ratio is smaller than this value tumbling turns stable, and an unstable limit cycle is born.Comment: 25 pages, 5 figure

    Ablation of carbonaceous materials in a hydrogen-helium arc-jet flow

    Get PDF
    The stagnation-point ablation rates of a graphite, a carbon-carbon composite, and four carbon-phenolic materials are measured in an arc-jet wind tunnel with a 50% hydrogen-50% helium mixture as the test gas. Flow environments are determined through measurements of static and impact pressures, heat-transfer rates to a calorimeter, and radiation spectra, and through numerical calculation of the flow through the wind tunnel, spectra, and heat-transfer rates. The environments so determined are: impact pressure approx. 3 atm, Mach number approx. 2.1, convective heat-transfer rate approx. 14 kw/sq cm, and radiative heat-transfer rate approx. 7 kw/sq cm in the absence of ablation. Ablation rates are determined from the measured rates of mass loss and recession of the ablation specimens. Compared with the predicted ablation rates obtained by running RASLE and CMA codes, the measured rates are higher by about 15% for all tested materials

    On the Quasi-stationary curving dynamics of a railroad truck

    Get PDF
    We examine three aspects of the dynamics of the Cooper-rider truck travelling in a curve with constant radius. First the critical speed is found. Second we investigate the existence of multiple steady solutions to the curving problem. Third- and it is related to the second problem- we shall examine the position of the truck frame and the wheelsets during curving. One inter-esting result is that for a given superelevation there exist curve radii for which the critical speed is exceeded, when the vehicle negotiates the curve with the allowed maximum cant deficiency. These critical speeds are lower than the critical speed on straight track

    The role of inertia for the rotation of a nearly spherical particle in a general linear flow

    Full text link
    We analyse the angular dynamics of a neutrally buoyant nearly spherical particle immersed in a steady general linear flow. The hydrodynamic torque acting on the particle is obtained by means of a reciprocal theorem, regular perturbation theory exploiting the small eccentricity of the nearly spherical particle, and assuming that inertial effects are small, but finite.Comment: 7 pages, 1 figur

    Thalamocortical Connectivity and Microstructural Changes in Congenital and Late Blindness

    Get PDF
    There is ample evidence that the occipital cortex of congenitally blind individuals processes nonvisual information. It remains a debate whether the cross-modal activation of the occipital cortex is mediated through the modulation of preexisting corticocortical projections or the reorganisation of thalamocortical connectivity. Current knowledge on this topic largely stems from anatomical studies in animal models. The aim of this study was to test whether purported changes in thalamocortical connectivity in blindness can be revealed by tractography based on diffusion-weighted magnetic resonance imaging. To assess the thalamocortical network, we used a clustering method based on the thalamic white matter projections towards predefined cortical regions. Five thalamic clusters were obtained in each group representing their cortical projections. Although we did not find differences in the thalamocortical network between congenitally blind individuals, late blind individuals, and normal sighted controls, diffusion tensor imaging (DTI) indices revealed significant microstructural changes within thalamic clusters of both blind groups. Furthermore, we find a significant decrease in fractional anisotropy (FA) in occipital and temporal thalamocortical projections in both blind groups that were not captured at the network level. This suggests that plastic microstructural changes have taken place, but not in a degree to be reflected in the tractography-based thalamocortical network

    Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia.

    Full text link
    An increasing number of studies supports the view that transcutaneous electrical stimulation of the spinal cord (TESS) promotes functional recovery in humans with spinal cord injury (SCI). However, the neural mechanisms contributing to these effects remain poorly understood. Here we examined motor-evoked potentials in arm muscles elicited by cortical and subcortical stimulation of corticospinal axons before and after 20 min of TESS (30 Hz pulses with a 5 kHz carrier frequency) and sham-TESS applied between C5 and C6 spinous processes in males and females with and without chronic incomplete cervical SCI. The amplitude of subcortical, but not cortical, motor-evoked potentials increased in proximal and distal arm muscles for 75 min after TESS, but not sham-TESS, in control subjects and SCI participants, suggesting a subcortical origin for these effects. Intracortical inhibition, elicited by paired stimuli, increased after TESS in both groups. When TESS was applied without the 5 kHz carrier frequency both subcortical and cortical motor-evoked potentials were facilitated without changing intracortical inhibition, suggesting that the 5 kHz carrier frequency contributed to the cortical inhibitory effects. Hand and arm function improved largely when TESS was used with, compared with without, the 5 kHz carrier frequency. These novel observations demonstrate that TESS influences cortical and spinal networks, having an excitatory effect at the spinal level and an inhibitory effect at the cortical level. We hypothesized that these parallel effects contribute to further the recovery of limb function following SCI.SIGNIFICANCE STATEMENT Accumulating evidence supports the view that transcutaneous electrical stimulation of the spinal cord (TESS) promotes recovery of function in humans with spinal cord injury (SCI). Here, we show that a single session of TESS over the cervical spinal cord in individuals with incomplete chronic cervical SCI influenced in parallel the excitability cortical and spinal networks, having an excitatory effect at the spinal level and an inhibitory effect at the cortical level. Importantly, these parallel physiological effects had an impact on the magnitude of improvements in voluntary motor output

    High angular resolution diffusion imaging with stimulated echoes: Compensation and correction in experiment design and analysis

    Get PDF
    Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared with T. It therefore has potential for biomedical diffusion imaging applications at 7T and above where T is short. However, gradient pulses other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM acquisition is found, due both to confounds in the analysis and the experiment design. Retrospectively correcting the analysis with a calculation of the full B matrix can partly correct for these confounds, but an acquisition that is compensated as proposed is needed to remove the effect entirely. © 2014 The Authors

    Optimal topological simplification of discrete functions on surfaces

    Get PDF
    We solve the problem of minimizing the number of critical points among all functions on a surface within a prescribed distance {\delta} from a given input function. The result is achieved by establishing a connection between discrete Morse theory and persistent homology. Our method completely removes homological noise with persistence less than 2{\delta}, constructively proving the tightness of a lower bound on the number of critical points given by the stability theorem of persistent homology in dimension two for any input function. We also show that an optimal solution can be computed in linear time after persistence pairs have been computed.Comment: 27 pages, 8 figure

    FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN

    Get PDF
    Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's’(sensitizer), β84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides
    • …
    corecore